## Geophysical and Mineralogical Controls on the Rheology of Fracture Slip and Seal Breaching DE-FE0023354

Derek Elsworth, Yi Fang, Chaoyi Wang, Yunhong Jia, Penn State Jeffrey Fitts, Catherine Peters, Kasparas Spokas, Princeton

> U.S. Department of Energy National Energy Technology Laboratory Mastering the Subsurface Through Technology, Innovation and Collaboration: Carbon Storage and Oil and Natural Gas Technologies Review Meeting August 16-18, 2016

# **Presentation Outline**

- Benefits
- Project Overview
- Technical Status
  - Premise
  - Observations and Active Experimentation
    - Meso-Scale Observations
      - Appropriate Caprocks
      - Velocity-Stepping Experiments permeability and stability
      - Slide-Hold-Slide Experiments permeability and recurrence
    - Micro-Scale Observations
      - Sintering
      - xCT Imaging
  - Analysis at Micro-Scale
    - Digital Rock Physics (DRP) models permeability and stability
    - Continuum permeability and stiffness
- Accomplishments
- Synergistic Opportunities
- Summary

# Benefit to the Program

### Addresses:

### Area of Interest 1, Geomechanical Research

.....to determine the constraints of whether seals transected by blind faults will fail seismically or aseismically when contacted by increased reservoir pressures including  $CO_2$  and the implications of this rupture on seal breaching and loss of inventory.

### Relevance to FOA ("in italics")

This project will provide:

*"improved understanding of geomechanical processes and impacts critical to scCO2 injection operations.* 

*This* [project specifically] *includes* [and integrates]: *theoretical studies, [and] laboratory, work to:* 

(a) evaluate and assess the probability of induced seismicity;

(b) understand, characterize, and measure potential permeability changes from slip along existing faults; and

(c) understand and assess the geomechanical behavior and effects of increased reservoir pressure on fractures, faults, and sealing formations." This will include......

## **Project Overview**: Goals and Objectives

## Examine geophysical and mineralogical controls of caprocks on:

- Fault slip Stable/unstable or aseismic/seismic
- **Permeability evolution** Sense and magnitude
- Potential for seal breaching Permeability and capillary behavior Including:
- Nature, form and rates of weakening that condition whether fractures and faults fail either seismically or aseismically
- *Nature, form and rates of healing* that define whether fractures may strengthen and then re-fail on multiple successive occasions, and
- *Permeability evolution (enhancement or destruction)* that is driven on fractures as a consequence of these behaviors
- Feedbacks on healing conditioned both by *physical and chemical transformations* and the redistribution of mineral mass driven by fluid transport.

# **Technical Status & Methodology**

#### Background

- Felt seismicity
  - Stable versus unstable slip
    - Mineralogical controls
    - Geometric (stiffness) controls
- Seal breaching
  - Evolution of permeability and capillarity characteristics

#### Methodology

- Collect, Synthesize and Characterize Sedimentary Formation Samples (Fitts, Lead)
  - Collect Homogeneous and Mineralogically Complex Sedimentary Rocks (Peters)
  - Sinter Mineral Mixtures to Create Idealized Analogs of Sedimentary Rocks (Fitts)
  - Conduct Baseline Characterization of Natural and Synthetic Caprocks (Fitts)
- Laboratory Experimentation (Elsworth, Lead)
  - Evolution of Fault Rheology and Transport Parameters (Elsworth)
  - 3D Imaging of fault contact area, fault geometry, and mineralogy & textures (Fitts)
- Modeling for Response and for Caprock Screening (Elsworth, Lead)
  - Digital Rock Physics Modeling of Response (Elsworth)
  - Caprock Screening Heuristics (Peters, Fitts)

## Subduction Zone Megathrusts and the Full Spectrum of Fault Slip Behavior



Ide et al., 2007; Peng & Gomberg, 2010

## **Requirements for Instability**

1. Shear strength on the fault is exceeded - *i.e.* 

 $\tau > \mu \sigma'_n$ 

2. When failure occurs, strength is velocity (or strain) weakening - *i.e.* 

$$a - b < 0$$

2. That the failure is capable of ejecting the stored strain energy adjacent to the fault (shear modulus and fault length) - *i.e.* 

$$\frac{G}{l} < K_c = \frac{(b-a)\sigma_n'}{D_c}$$

 That effective normal stresses evolve that do not dilatantly harden the fault and arrest it via the failure criterion of #1 - *i.e.*

$$1 >> v_D = \frac{w^2}{k} \frac{v_s \eta}{K_s D_c}$$







## Mineralogical Controls on Instability



## Aseismic-Seismic Transition



Scale Dependence - the need for URLs and constrained experimentation at meso scale.

### Roles of:

**Pressurization**  $(\sigma_n' \rightarrow 0)$ 

Deformation ahead of the fluid front Mineralogical controls

[Guglielmi et al., Science, 2015]



## Rate-State Friction [1]

### **Velocity Steps**



 $\frac{d\theta}{dt} = \frac{-\nu\theta}{D_C} \ln\left(\frac{\nu\theta}{D_C}\right) \quad (\text{Ruina Evolution})$ 

#### Dilation



#### **Permeability Evolution**

$$\frac{k}{k_0} = (1 + \frac{\Delta b}{b_0})^3 = (1 + \frac{\Delta H}{H})^3$$

### Multiple Velocity Steps



g3.ems.psu.edu

# Rational Linkages: Rate-State Friction, Porosity and Permeability



## **Frictional Stability-Permeability Experiments**



## Frictional Stability-Permeability Observations



g3.ems.psu.edu

## Mineralogical Sample Space



#### Natural Samples:

- (1) Green River Shale (Colorado, USA);
- (2) Longmaxi Shale (Chongqing, China);
- (3) Marcellus Shale (Pennsylvania, USA);
- (4) Newberry Tuff (Oregon, USA);
- (5) Tournemire Shale(France);
- (6) Opalinus Shale (Switzerland)





Bulk mineralogy of caprock formations (*Tan Bourg LBNL NCGC*)

## Green River Shale- Permeability Enhancement



### Phyllosilicate-dominant Artificial Sample- Permeability Decrease



## Nascent Friction-Stability-Permeability Relationships



### Observations

- dk/k0 increases with increased brittleness (a-b)<0</li>
- dk/k0 increases with increased frictional strength
- Roles of mineralogy and surface roughness?



## Quantifying fracture geometry with X-ray tomography

Post flow/shear subcores for xCT



xCT imaging at APS Sector 13 GSECARS

Developed 3D image segmentation method for complex fractures 'TILT' - for fractures with rough porous surfaces & wear products



Deng, H., Fitts, J.P. & Peters, C.A. Comput Geosci (2016) 20: 231.

# 'Digital fractures' combine 3D xCT and fracture surface characterizations

<u>2D fracture surface characterization</u> Detailed mineral spatial distribution and textures



### <u>3D xCT characterization</u>

Aperture geometry, contacting asperities & coarse mineral distributions



Grey-scale xCT data

3D sulfide distribution



quaternary segmentation

Inputs for simulating friction-stabilitypermeability evolution & deriving constitutive relations

## Stability-Permeability Relations in Composites/Mixtures



## **Multi-Mineral Frictional Strength**



## Mixture Controls of Frictional Instability



g3.ems.psu.edu

## Multi-Mineral Frictional Stability



## **Texture-dependent Localization Effects**



#### Distributed heterogeneity:

Slipped contacts are distributed homogeneously in the sample, following critical shear band directions.

#### Textured/layered:

Slipped contacts are distributed inside talc/weak layer, forming a localized shear zone, forcing most slip to evolve within this zone.

## Evolution of Layer thickness, Coord. Num, and Porosity



## **Coupling Reactive Transport and Mechanical Deformation**

#### **Research Questions & Methods**

- For fractures in carbonate rocks exposed to acidified brine, how does the coupling of geochemical and geomechanical processes affect the pattern of dissolution and the subsequent evolution of fracture transmissivity?
- How does mineral heterogeneity impact the evolution of fracture geometry and transmissivity?
  - Keeping constant initial fracture geometry, pressure gradient, and inlet chemistry.

Approach: 2D Fracture Flow Model with Coupled Reactive Transport and Mechanical Deformation





## Transmissivity Change over Time



- When the rock is spatially <u>homogenous</u> mineralogically, transmissivity remains controlled by unreacted downstream apertures
- When the rock includes areas of <u>nonreactive minerals</u>, the reactive front penetrates farther downstream faster, however certain mineral distributions can also inhibit channel formation
- When mineral dissolution is combined with constant normal mechanical load, <u>fracture</u> <u>closure delays transmissivity increase</u>
- Future Projects:
  - Effect of reactive transport along fracture interfaces on fracture frictional properties



# Accomplishments to Date

#### ACCOMPLISHMENTS

- Caprock Mineralogy
  - Broad range of samples acquired: Eagle Ford, Green River Shale and Opalinus....
  - · Frictional strength of fabricated samples consistent with natural samples
- VS and SHS Experiments
  - Mechanisms-based seismicity-permeability evolution RSF-k
  - VS experiments on broad suite of natural and artificial samples
  - Nascent stability-permeability relations (indicate larger stability smaller dk)
- Imaging
  - Frozen post-test fractures
  - Completed first imaging and segmentation of sheared fractures
- Modeling
  - DRP models for friction and stability gouge compared with mixtures data
    - Enables testing of laboratory data for stability and permeability
  - Developed RT models for stiffness and permeability evolution of fractures

#### ONGOING

- Refine Mechanistic Understanding of Behaviors
  - VS stability experiments systematic roles of mineralogy and additionally roughness
  - · SHS experiments for healing and recurrence and consequences for multiphase flow
  - Reactive transport properties on sheared fractures
  - DRP models of Biot and transport properties
- Integrating modeling and experiments and imaging

# Synergistic Opportunities

### - TILT.princeton.edu

- Linkages with:
  - Projects exploring petrophysical characterization as methods to deply findings
  - Projects exploring field scale response -URLs and field experimentation (Guglielmi, Aix-Marseille & LBNL)
    - Seismicity-permeability correlations
    - Linkages across scales for upscaling
    - LSBB (Carbonate), Tournemire (Shale), Mt Terri (Shale)
  - Imaging in vivo (Dustin Crandall)





# Summary

- Rupture of caprocks is a potentially important issue in CCS where:
  - Large overpressures may result from CO<sub>2</sub> injection
  - May result in seismic (felt) or aseismic rupture
  - May result in loss of inventory
- Absent and needed are data/information to constrain:
  - Seismic and aseismic reactivation of faults/fractures distribution of felt/aseismic events?
  - Healing of faults/fractures what are event recurrence intervals?
  - Evolution of multiphase flow and transport properties likelihood of breaching and loss?
- Develop methodologies for:
  - Integration of process measurements and imaging at microcscale
  - Scaling microscale-to-mesoscale via digital rock physics models as a new tool
- Apply to CCS by:
  - Enabling the screening of potential caprock materials for suitability and durability
  - Providing a consistent view of the likelihood and consequences of breached seals on seismic risk and loss of inventory for candidate CO<sub>2</sub> storage reservoirs.

Appendix Following

# Appendix

Following

## **Organization Chart/ Communication Plan**



# Gantt Chart

| SCHEDULE of TASKS and MILESTONES                                                             |              | BP1 Oct 2014 to Sept 2015 |           |                  |                      |                      | BP2 Oct 2015 to Sept 2016 |                      |                      |                      | BP3 Oct 2016 to Sept 2017 |                      |                      |                      |  |
|----------------------------------------------------------------------------------------------|--------------|---------------------------|-----------|------------------|----------------------|----------------------|---------------------------|----------------------|----------------------|----------------------|---------------------------|----------------------|----------------------|----------------------|--|
|                                                                                              | PI           | <b>Y1Q1</b><br>ONE        | <b>Y1</b> | <b>Q2</b><br>F M | <b>Y1Q3</b><br>A M J | <b>Y1Q4</b><br>J A S | <b>Y2Q1</b><br>O N D      | <b>Y2Q2</b><br>J F M | <b>Y2Q3</b><br>A M J | <b>Y2Q4</b><br>J A S | <b>Y3Q1</b><br>OND        | <b>Y3Q2</b><br>J F M | <b>Y3Q3</b><br>A M J | <b>Y3Q4</b><br>J A S |  |
| Task 1 Project management and planning                                                       | Elsw orth    |                           |           |                  |                      |                      |                           |                      |                      |                      |                           |                      |                      |                      |  |
| Task 2 Collect, synthesize and characterize                                                  | Fitts        |                           |           |                  |                      |                      |                           |                      |                      |                      |                           |                      |                      |                      |  |
| SubTask 2.1 – Collect Homogeneous and Mineralogically                                        | Peters       |                           |           |                  |                      |                      |                           |                      |                      |                      |                           |                      |                      |                      |  |
| SubTask 2.2 – Sinter Mineral Mixtures to Create(Fitts)                                       | Fitts        | а<br>1                    |           |                  | -                    |                      |                           |                      |                      |                      |                           |                      |                      |                      |  |
| SubTask 2.3 – Conduct Baseline Characterization of<br>Natural and Synthetic Caprocks (Fitts) | Fitts        |                           | H         |                  | -                    |                      |                           |                      | _                    |                      |                           |                      |                      |                      |  |
| Task 3 Laboratory Experimentation                                                            | Elsw orth    |                           |           |                  |                      |                      |                           |                      |                      |                      |                           |                      |                      |                      |  |
| Subtask 3.1 Evolution of Fault Rheology<br>and Transport Parameters                          | Elsw orth    |                           |           |                  | -                    |                      |                           |                      | -                    |                      |                           |                      |                      |                      |  |
| Subtask 3.2 3D Imaging of fault contact area, fault geometry, and mineralogy & textures      | Fitts        |                           |           |                  |                      |                      |                           |                      |                      |                      |                           |                      |                      |                      |  |
| Task 4 Modeling for Response and Caprock                                                     |              |                           |           |                  |                      |                      |                           |                      |                      |                      |                           |                      |                      |                      |  |
| Screening<br>Subtask 4.1 Digital rock physics of response                                    | Elsw orth    |                           |           |                  |                      |                      |                           |                      |                      |                      |                           |                      |                      |                      |  |
| Subtask 4.2 Caprock screening heuristics                                                     | Peters/Fitts |                           |           |                  |                      |                      |                           |                      |                      |                      |                           |                      |                      |                      |  |

# Bibliography

Zhong, Z., Elsworth, D., Hu, Y. (2016) Evolution of strength and permeability in stressed fractures with fluid-rock interactions. Pure and Applied Geophys., Vol. 173, No. 2, pp. 525-536. http://dx.doi.org/10.1007/s00024-015-1099-5

Zhong, Z., Elsworth, D., Hu, Y.J. (2015) Frictional properties of the stressed limestone fracture. Proc. ISRM Congress, Montreal, Canada. May 10-13. ISBN: 978-1-926872-25-4

Ellis, B.R. and Peters, C.A. (2015) 3D mineral characterization of reactive fractures: Combining X-ray tomography and electron microscopy. In press. *Advances in Water Resources*, 30 pp.

Fang, Y., Elsworth, D., Wang, C., Ishibashi, T., Fitts, J.P. (2016) Friction-Stability-Permeability relationships for fractures in shale. In review.

Wang, C., Elsworth, D. (2016) Influence of weakening minerals on the ensemble strength and slip stability of faults. In review.

Fang, Y., Wang, C., Elsworth, D., Ishibashi, T. (2016) Friction-permeability relationships for reservoir caprocks. Proc. 50th US Symposium on Rock Mechanics and Geomechanics. Houston. June 26-29.

Wang, C., Elsworth, D. (2016) Numerical investigation of the effect of frictionally weak minerals on the shear strength of faults. Proc. 50th US Symposium on Rock Mechanics and Geomechanics. Houston. June 26-29.

Ishibashi, T., Asanuma, H., Fang, Y., Wang, C., Elsworth, D. (2016) Exploring the link between permeability and strength during fracture shearing. Proc. 50th US Symposium on Rock Mechanics and Geomechanics. Houston. June 26-29.

# **Bibliography - Presentations**

Fang, Y., Wang, C., Elsworth, D., Ishibashi, T. (2016) Friction-permeability relationships for reservoir caprocks. Proc. 50th US Symposium on Rock Mechanics and Geomechanics. Houston. June 26-29.

Wang, C., Elsworth, D. (2016) Numerical investigation of the effect of frictionally weak minerals on the shear strength of faults. Proc. 50th US Symposium on Rock Mechanics and Geomechanics. Houston. June 26-29.

Ishibashi, T., Asanuma, H., Fang, Y., Wang, C., Elsworth, D. (2016) Exploring the link between permeability and strength during fracture shearing. Proc. 50th US Symposium on Rock Mechanics and Geomechanics. Houston. June 26-29.

Elsworth, D., Gan, Q., Fang, Y., Pogacnik, J., Taron, J., Izadi, G., Guglielmi, Y., Im, K.J., Wang, C., Ishibashi, T., Niemeijer, A., Candela, T. 2016. Induced seismicity and permeability evolution in EGS reservoirs – The good, the bad and the ugly. ARMA Workshop on Microseismic Geomechanics from Laboratory to Field Scale across all Industries. June 26. [Invited]

Elsworth, D., Gan, Q., Fang, Y., Pogacnik, J., Taron, J., Izadi, G., Guglielmi, Y., Im, K.J., Wang, C., Ishibashi, T., Niemeijer, A., Candela, T. 2016. Induced seismicity and permeability evolution in EGS reservoirs – The good, the bad and the ugly. First Annual Darcy Center Symposium. *Mastering the Complexity of Fracture Networks*. Technical University of Eindhoven, Netherlands. June 2. [Keynote]

Elsworth, D., Zhi, S., Wang, S., Liu, J. 2016. The role of gas desorption on the energetic failure of coal. Northeastern University, Shenyang, China. May 26. [Invited]

Elsworth, D. 2016. Creating and sustaining the reservoir – the key ingrediant for all unconventional energy resources. Launch Ceremony, International Research Center for Unconventional Geomechanics, Northeastern University, Shenyang. May 23. [Invited]

Elsworth, D. 2016. Creating and sustaining the reservoir – the key ingrediant for all unconventional energy resources. 3rd Int. Symp. on Unconventional Geomechanics. Wuhan. May 21-22. [Keynote]

Elsworth, D., Gan, Q., Fang, Y., Pogacnik, J., Taron, J., Izadi, G., Guglielmi, Y., Im, K.J., Wang, C., Ishibashi, T. 2016. Induced seismicity and permeability evolution in EGS reservoirs – The good, the bad and the ugly. Second Int. Conf. on Rock Dyn. and App., Suzhou. May 19. [Keynote]

Elsworth, D., Gan, Q., Fang, Y., Pogacnik, J., Taron, J., Izadi, G., Guglielmi, Y., Im, K.J., Wang, C., Ishibashi, T. 2016. Control of permeability and seismicity in EGS reservoirs – The good, the bad and the ugly. China University of Mining and Technology, Beijing. May 16. [Invited]

Spokas, K., Peters, C.A. (2016) Coupling Stress and Reactive Transport in Fractures: Effects of Mineralogy on the Evolution of Contacting Asperities and Fracture Permeability. XXI International Conference of Computational Methods in Water Resources. Toronto, Canada. June 20-24.

Spokas, K., Peters, C.A., Pyrak-Nolte, L.J. (2016). Modeling Geomechanical Deformation in Reactive Fractures. 26th Goldschmidt Conference. Yokohama, Japan. June 26-July 1.